

neurostimulation laboratory university milano bicocca

OPTIMIZING TDCS PROTOCOLS BY LOOKING FOR THE MOST EFFECTIVE TIMING OF STIMULATION WITH RESPECT TO TASK EXECUTION

Feroldi Sarah^a, Vergallito A.^b, Diani N., Arrigoni E.^a, Pisoni A.^b, Romero Lauro L.J.^b ^a Ph.D. Student in Neuroscience, Department of Medicine and Surgery, University Milano-Bicocca ^b Department of Psychology, University Milano-Bicocca

XXXI CONGRESSO NAZIONALE SIPF

Siena 9-11 novembre 2023 Museo Santa Maria della Scala

BACKGROUND

- Neurophysiological effects of tDCS on cortical excitability
 - ➤ at rest:
 - > a-tDCS increased cortical excitability in a widespread network
 - c-tDCS failed to modulate cortical excitability
 - tDCS+task:
 - a-tDCS induced increase in cortical excitability is confined to functionally activated network
 - c-tDCS decreased cortical excitability.

State dependency

- Studies heterogeneity concerning tDCS + task:
 - > priming
 - > synergistic
 - consolidator

Bikson & Rahman, 2013; Siebner, et al., 2009; Tatti et al., 2022; Pisoni et al., 2018; Romero Lauro et al., 2014; 2016; Varoli et al., 2018; Vergallito et al., 2023

AIM

This study aims to investigate how different coupling of the stimulation induced by tDCS with the endogenous stimulation induced by a concurrent task execution might result in stronger behavioral effects for both polarities.

STUDY DESIGN

SHAM

Società Italiana di Psicofisiologia e Neuroscienze Cognitive

SIPF

in one of these configurations, counterbalanced between participants

STUDY 1: ANODAL-tDCS

PARTICIPANTS	28 healthy right-handed (21 F; 7 M)
AGE	22.6 ± 1.9 (range 19 - 27)
EDUCATION	16.5 ± 1.7 (range 13 - 18)

STUDY 2: CATHODAL-tDCS

PARTICIPANTS	14 healthy right-handed (10 F; 4 M)
AGE	27 ± 8.7 (range 19 - 55)
EDUCATION	16.5 ± 2.6 (range 13 - 21)

tDCS PARAMETERS:

Target electrode: rPPC (25 cm²)

Reference electrode: left SO area (35 cm²)

1.5 mA for 20 minutes

TASK 1: PCT POSNER CUEING TASK

3 blocks x 96 trials each CUE: valid vs. invalid

TASK 2: ANT ATTENTION NETWORK TEST

3 blocks x 96 trials each CUE: valid, invalid, null, double TARGET: congruent, incongruent, neutral

Statistical Analysis

- Study 1 and 2 were analyzed separately
- two mixed models (ACC and RTs)
- fixed effects in ANT: stimulation timing (4 levels), target (3 levels), and cue (4 levels)
- random effect: subjects' intercept

ACCURACY \sim (stimulation*cue*target) + trial + (1|ID)

STUDY 1: ANODAL-tDCS

STUDY 2: CATHODAL-tDCS

 \uparrow for congruent target $(\chi^2(2) = 1216.03; p < .001)$

 \uparrow for valid cue ($\chi^2(3)$ = 16.22; p<.01)

 \uparrow with trial ($\chi^2(1)$ = 25.65; p<.001)

No main effect of stimulation timing (p=0.34)

Interaction stimulation timing*cue $(\chi^2(9)=17.36; p<.05)$

 \uparrow for congruent target $(\chi^2(2) = 962.21; p < .001)$

 \uparrow for valid cue ($\chi^2(3)$ = 39.1; p<.01)

No main effect of trial (p=0.68)

No main effect of stimulation timing (p=0.93)

Interaction stimulation*cue ($\chi^2(9)$ = 17.36; p<.05)

ACCURACY

Società Italiana di Psicofisiologia e Neuroscienze Cognitive

RTs ~ (stimulation*cue*target) + trial + (1|ID)

STUDY 1: ANODAL-tDCS

STUDY 2: CATHODAL-tDCS

Interaction target*cue $(\chi^2(6)=5.24; p<.001)$

 \downarrow for congruent target ($\chi^2(2)$ = 6594.56; p<.001)

 \downarrow for valid cue (χ^2 (3)= 933.22; p<.001)

 \uparrow with trial ($\chi^2(1)$ = 11.33; p<.001)

 \uparrow for stimulation timing ($\chi^2(3)$ = 39.18; p<.001)

Interaction target*cue $(\chi^2(6)= 12.8; p<.05)$

 \downarrow for congruent target ($\chi^2(2)$ = 3541.74; p<.001)

 \downarrow for valid cue (χ^2 (3)= 504.56; p<.001)

 \uparrow with trial ($\chi^2(1)$ = 6.92; p<.005)

 \uparrow for stimulation timing ($\chi^2(3)$ = 52.01; p<.001)

RTs ~ (stimulation*cue*target) + trial + (1|ID)

Statistical Analysis

- Study 1 and 2 were analyzed separately
- two mixed models (ACC and RTs)
- fixed effects in PPC: stimulation timing (4 levels) and cue (2 levels)
- random effect: subjects' intercept

ACCURACY ~ (stimulation*cue) + trial + (1|ID)

STUDY 1: ANODAL-tDCS

STUDY 2: CATHODAL-tDCS

 \uparrow for valid cue (χ^2 (1)= 259.85; p<.001).

 \downarrow with trial ($\chi^2(1)$ = 6.32; p<.05).

No main effect of stimulation timing (p=0.30)

 \uparrow for valid cue (χ^2 (1)= 275.59; p<.001)

No main effect of trial (p=0.56)

 \uparrow with stimulation ($\chi^2(3)$ = 11.95; p<.005)

ACCURACY ~ (stimulation*cue) + trial + (1|ID)

STUDY 2: CATHODAL-tDCS

RTs ~ (stimulation*cue) + trial + (1|ID)

STUDY 1: ANODAL-tDCS

STUDY 2: CATHODAL-tDCS

 \downarrow for valid cue (χ^2 (1)= 3652.86; p<.001)

No main effect of trial.

 \downarrow for stimulation timing ($\chi^2(3)$ = 86.14; p<.001)

 \downarrow for valid cue (χ^2 (1)= 3275.09; p<.001)

 \uparrow for trial ($\chi^2(1)$ = 17.81; p<.001)

 \uparrow for stimulation timing ($\chi^2(3)$ = 17.38; p<.001)

RTs ~ (stimulation*cue) + trial + (1|ID)

STUDY 1: ANODAL-tDCS

Società Italiana di Psicofisiologia e Neuroscienze Cognitive

STUDY 2: CATHODAL-tDCS

GENERAL CONCLUSION

Behavioral effects depend on the stimulation timing.

Greater modulation in online condition or after preactivating the network. Our results further confirm the **state dependency** of tDCS' behavioral effect.

> Timing matters

The polarity-dependent effect emerges only in online conditions.

Obtaining more evidence could pave the way to optimize tDCS use in clinical protocols.

NEUROSTIMULAB

neurostimulation laboratory university milano bicocca

Eleonora Arrigoni

Alberto Pisoni

Alessandra Vergallito

Leonor Romero Lauro

XXXI CONGRESSO NAZIONALE SIPF

Siena 9-11 novembre 2023 Museo Santa Maria della Scala

NEUROSTIMULAB

neurostimulation laboratory university milano bicocca

SLIDE AGGIUNTIVE

Siena 9-11 novembre 2023 Museo Santa Maria della Scala

ABSTRACT

- Previous studies from our group showed how the neurophysiological effects of tDCS depend on the background activity of the stimulated area: at rest anodal tDCS increased cortical excitability in a widespread network (Romero Lauro et al., 2014; 2016), while participants' involvement in a task during tDCS restricted such increment along the functionally activated network (Pisoni et al., 2018).
- This study aims at investigating how different coupling of the stimulation induced by tDCS with the endogenous stimulation induced by a concurrent task execution might result in stronger behavioral effects.
- We applied anodal tDCS for 20 minutes to the right posterior parietal cortex before, after, or during a visuospatial attention task (Posner task, PT) to find the most effective coupling between stimulation and task execution to induce greater changes in participants' performance on a second visuospatial task (Attention Network Task, ANT).
- This resulted in a within-subject study in which 26 healthy adults participated in four experimental sessions, one sham and three anodal, counterbalanced between participants.
- Statistical analyses were carried out using a mixed-model regression inserting accuracy and reaction times (RTs) as dependent variables and the subjects' intercept as a random factor.
- In line with previous literature, participants were more accurate and faster for congruent targets or valid cues.
- We found an interaction between stimulation and target condition ($\Box 2(6) = 12.31$; p=.055): in particular, stimulation applied after PT improved accuracy when the target is neutral in the ANT, compared to online stimulation (p<.05).
- Stimulation had a main effect on RTs ($\Box 2(3) = 56,48$; p<.001), and, interestingly, the stimulation both during-PT and pre-PT resulted in prolonged RTs in the ANT compared to post-PT and sham conditions (p<.05).
- Our preliminary results further confirm the dependence of anodal tDCS behavioral effect on the background activity of the targeted brain area, showing an advantage of pre-activating the targeted brain area with a similar task before the stimulation compared to not pre-activate.

BACKGROUND

- Several studies converge in suggesting that tDCS effects might depend on the background activity of the stimulated area [1, 2, 3].
- Nevertheless, studies are typically heterogeneous considering the coupling of brain stimulation and cognitive tasks, sometimes delivering tDCS before the task (as priming), sometimes during (as synergistic), and sometimes after (as consolidator) [4].
- Previous studies from our group showed how the neurophysiological effects of tDCS depend on the background activity of the stimulated area: at rest anodal tDCS increased cortical excitability in a widespread network (Romero Lauro et al., 2014; 2016), while participants' involvement in a task during tDCS restricted such increment along the functionally activated network (Pisoni et al., 2018).

[1] Bikson & Rahman, 2013; [2] Pisoni et al., 2018; [3] Siebner, et al., 2009;[4] Tatti et al., 2022.