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LuceA Independent specializations
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Auditory features modelling demonstrates sound
envelope representation in the striate cortex
Davide Bottari (Lucca)

Blindness affects occipital cortex reactivity: a TMS-EEG
study
Gabriel Hassan (Milano)

Early cortical sensory responses in typical but not in blind
and deaf individuals
Monica Gori (Genova)
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AUDITORY FEATURES MODELLING
DEMONSTRATES SOUND ENVELOPE
REPRESENTATION IN THE STRIATE CORTEX

Davide Bottari, PhD
IMT School for Advanced Studies Lucca, Italy
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Is neocortex essentially multisensory?

Asif A. Ghazanfar' and Charles E. Schroeder?

'Program in Neuroscience, Department of Psychology, Green Hall, Princeton University, Princeton, New Jersey, 08540, USA
2Cognitive Neuroscience and Schizophrenia Program, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd,
Orangeburg, New York, 10962, USA
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Event Related Responses (ERPs) to a tone have
been measured with intracranial recordings

BV e e L A L AL NS
A A ALV TN from V1 (ERPs Mercier et al., 2013).
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Adapted from Mercier et al., 2013
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High gamma neural oscillations after white-
P noise bursts were measured in striate cortex
g, (Ferraro et al., 2020).

B Time (s) ¢
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(measured by phosphene perception)

2

@ Bsl

»lmL
®R
As,
V S
—
° %
o

Looming sounds have been found more
effective than static or receding sounds in
enhancing visual cortex excitability (Romei et

Phosphene perception [%]
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al., 2009).
Adapted from Romei et al., 2009
a Center frequency effects
1 ﬂ H High pitch and narrowband sounds elicit a
baandw.z.f;ll:f'“ e greater increase of visual cortex excitability
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T ﬂ H sounds, respectively (Spierer et al., 2013).
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We investigated whether the envelope of natural sounds is mapped in V1

Why?

Natural sounds and vocalizations are characterized by high energy at slow
temporal modulations

Intensity fluctuations match the neural coding selectivity of the auditory system
(Hsu et al., 2004; Riecke, 1995)




SCHOOL

l MT FOR ADVANCED
STUDIES

LUCCA
A phoneme sytlable\ phoneme syIIabIe\\
Automatic Q
Q Removal of %
% Semantics 3 ¢ r
— |
s e s AN N A
= ]
S 0 Sound Categories
__________________________________ Q
0
WORD PSEUDOWORD
1
1 517,]: ;

Noise Source .

« Wo

e
“ata

w
."
-

Flattening

. - | ===
» Pseudowdrds [no semantics] .. fireing

u-.:-

Properties 2 20

26Hz 6-10Hz 1Hz

*  Artificial-noises V%Qdéixsfguri ARTIFICIAL ' BIRD CHIRP

[no semantiesz-no imaginabili !
no spectr. s.;‘»x&. ’ L
. Y 2 L
+ Bird chirps [ne se 3 -1
language] ! N
0-._!

Martinelli et al., bioRxiv



SCHOOL

IMT |05 Analysis Pipeline

LUCCA

Searchlight < ] Searchlight
Early Visual Cortex Temporal Cortex
PC norm C norm
% BOLD . score PSD PSD actual RMSE
-5 - +5 min T max 2@ .2 2@y a2 _ RMSE 0.85 N 0.65
it i f.m. L L BB E = ¢, nu Calcs
=t R TR - Sm= & h distribution B :
E ! ‘:\ ‘“ T.' ‘p‘l‘ il - | i E-z= > o M o
: *fr'E.;:flg* okl =5 ==
e - = = o
voxels 2 eé low high 2
oY gt Error
I o &
Voxel Activity Principal Component RMSE NP Test Rendering

Regression

\ A
N=20, Blindfolded Participants

Martinelli et al., bioRxiv



SCHOOL

IMT | oo ™ Reconstruction of the sound envelope power in the
LUCCA

— 6-10 Hz frequency range
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Overlap across participants
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The envelope of sounds was traceable in Temporal and in the Calcarine cortex:

Regressing out global signal (no arousal)

With non-imaginable sounds (pseudowords and artificial sounds)

In the absence of spectral properties (artificial sounds)

The effect was not speech-specific (bird chirps)
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Which factors characterize the dynamic of this crossmodal response?
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Overall, results suggest that the early visual cortex maps sound envelope
(irrespective of semantics, spectral content, and language). This input reaches the
early visual cortex following auditory processing (>250-400m:s).

When the task required extraction of sound from noise (i.e., was strictly auditory),
crossmodal activity seemed reduced

Energetic variation in sounds (non-stationarity) could help drive multisensory
integration

Overall, these results could help understand why in blind individuals, V1 is typically
found to represent different sound categories (e.g., Vetter et al., 2020) and speech
(Bedny et al., 2011).
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* Most recent approaches of language processing link the analysis of acoustics features of
speech and brain activity (Entrainment: e.g. Giraud and Poeppel, 2012 NN)

* Through voxelwise modeling we can determine which specific speech-related features (for
instance amplitude modulations) are represented in each voxel
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Entrainment is typically calculated at speech related rates (e.g. syllabic, phonemic)
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Acoustic features: from the sound envelope (AM over time) syllabic and phonemic
frequencies ~4 Hz and ~8 Hz respectively (e.g. Keitel, Gross & Kayser, 2018)

model: 2 normalized columns of power, one centered on the syllabic frequency (2-6 Hz),
the other on the phonemic freq. (6-10 Hz) both for words, pseudowords and artificial noise
vocoded sounds. The two frequency ranges were not collinear.
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The primary visual cortex exhibited
robust responsiveness to a noise
burst (Martuzzi et al., 2007)

Audition ; ” 2 MVPA of fMRI signals revealed that
i 1 distinguishable spatial patterns of
prT—— m Vi neuronal activities in response to a
A 1 N tone could be predicted not only in
e any the primary auditory cortex, but in
e V1 as well (Liang et al., 2013)

Adapted from Liang et al., 2013
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A TMS-probed visual cortex excitability

Phosphene perception [%]
o

In a combined EEG-TMS experiment, it was

} shown that a sound (pure tone) can phase lock

B EEG-probed visual Cortex reactivity alpha oscillations in human visual cortex, with

D I direct consequences for perception
(phosphene measure; Romei et al., 2012).
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Responses to artificial sounds do not allow to exploit the richness of the
population encoding properties.

Natural sounds and vocalizations are characterized by profiles of high power at
slow temporal amplitude modulations. The statistical structure of natural sounds,
such as their characteristic intensity fluctuations, matches the neural coding
selectivity of the auditory system (Hsu et al., 2004; Riecke, 1995).

We modelled the envelope power of natural sounds, starting from vocalizations,
and specifically assessed whether this hallmark of neural representation of sounds
is mapped in V1.



SCHOOL

IMT |soies ™" Methods

LUCCA

- 3T fMRI, TR= 2, 2x2x3 voxel size
- N =20 sighted blindfolded participants (mean age 34.5y)

- Participants were asked to detect a rare deviant sound having 200 ms gap

- Global Signal Regression procedure (Aguirre, 1998; Macey et al., 2004)

- Searchlight approach (8 mm radius) in a large patch of cortex comprising the Lateral Sulcus,
Superior Temporal Sulcus (AICHA atlas) and Calcarine Sulcus (probabilistic map by Wang et
al., 2015) in the left and right hemispheres separately

- a Voxel-wise decoding on based on Principal Component Regression (PC) Analysis (Thirion et
al., 2017) was employed. PC scores extracted from the fMRI data represented the
independent variable and the power of Low (e.g., 2-6Hz) and High (e.g., 6-10Hz) modulation
frequencies the dependent one

- Statistical analyses were performed by a cross-validation procedure (within subject) and by
using a permutation tests (1000 iterations), results were FDR corrected (Benjamini and
Yekutieli, 2001).
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@ Continuous speech engages visual cortex in blind individuals (MEG, Van Ackeren et al, 2017).
-> Data collection from blind participants was not feasible due to the COVID19 pandemic! We changed perspectives:

@ Visual cortex activation is associated to speech envelope even in sighted blindfolded participants (fMRI: see Martinelli et al., 2020 -
preprint from our group).

® Here we can use sighted blindfolded individuals as a model to investigate speech envelope tracking when visual input is lacking

Aim: Investigate cortical entrainment to speech envelope in sighted blindfolded individuals

EEG recording: sighted blindfolded participants (N = 15; right-handed; IMT students);
64-channel EGI HydroCel GSN SensorNet; sampling rate 500Hz; reference electrode — Cz

Stimuli: continuous stories (15 min per condition, divided in 5 min chunks) from an audiobook for children (‘Polissena del Porcello’,
Italian); background if present 5-talker babble noise (Italian)

Behavioural responses: 3 very specific Yes/No questions for each part of a story; Intelligibility rating: 1-7 (completely unintelligible/very
intelligible)
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